protection

Why does an operating
system have a kernel?

The Kernel
Abstraction

A central role of operating systems is protection — the isolation of potentially
misbehaving applications and users so that they do not corrupt other applica-
tions or the operating system itself. Protection is essential to achieving several
of the operating systems goals noted in the previous chapter:

o Reliability. Protection prevents bugs in one program from causing crashes
in other programs or in the operating system. To the user, a system crash
appears to be the operating system’s fault, even if the root cause of the
problem is some unexpected behavior by an application or user. Thus,
for high system reliability, an operating system must bullet proof itself
to operate correctly regardless of what an application or user might do.

e Security. Some users or applications on a system may be less than com-
pletely trustworthy; therefore, the operating system must limit the scope
of what they can do. Without protection, a malicious user might sur-
reptitiously change application files or even the operating system itself,
leaving the user none the wiser. For example, if a malicious application
can write directly to the disk, it could modify the file containing the
operating system’s code; the next time the system starts, the modified
operating system would boot instead, installing spyware and disabling
virus protection. For security, an operating system must prevent un-
trusted code from modifying system state.

e Privacy. On a multi-user system, each user must be limited to only the
data that she is permitted to access. Without protection provided by the
operating system, any user or application running on a system could
access anyone’s data, without the knowledge or approval of the data’s

39

40

Chapter 2 The Kernel Abstraction

operating system
kernel

Do applications need
to implement
protection?

APP APP APP
Untrusted
Operating System Trusted
Kernel
Hardware

Figure 2.1: User-level and kernel-level operation. The operating system kernel is
trusted to arbitrate between untrusted applications and users.

owner. For example, hackers often use popular applications —such as
games Or screen savers—as a way to gain access to personal email,
telephone numbers, and credit card data stored on a smartphone or
laptop. For privacy, an operating system must prevent untrusted code
from accessing unauthorized data.

e Fair resource allocation. Protection is also needed for effective resource
allocation. Without protection, an application could gather any amount
of processing time, memory, or disk space that it wants. On a single-
user system, a buggy application could prevent other applications from
running or make them run so slowly that they appear to stall. On a
multi-user system, one user could grab all of the system’s resources.
Thus, for efficiency and fairness, an operating system must be able to
limit the amount of resources assigned to each application or user.

Implementing protection is the job of the operating system kernel. The kernel,
the lowest level of software running on the system, has full access to all of the
machine hardware. The kernel is necessarily trusted to do anything with the
hardware. Everything else — that is, the untrusted software running on the
system — is run in a restricted environment with less than complete access to
the full power of the hardware. Figure 2.1 illustrates this difference between
kernel-level and user-level execution.

In turn, applications themselves often need to safely execute untrusted
third party code. An example is a web browser executing embedded Javascript
to draw a web page. Without protection, a script with an embedded virus can
take control of the browser, making users think they are interacting directly
with the web when in fact their web passwords are being forwarded to an
attacker.

This design pattern — extensible applications running third-party scripts —
occurs in many different domains. Applications become more powerful and

Chapter 2 The Kernel Abstraction 41

process

Does protection
compromise
performance?

widely used if third party developers and users can customize them, but doing
so raises the issue of how to protect the application itself from rogue extensions.
This chapter focuses on how the operating system protects the kernel from
untrusted applications, but the principles also apply at the application level.

A process is the execution of an application program with restricted rights;
the process is the abstraction for protected execution provided by the operating
system kernel. A process needs permission from the operating system kernel
before accessing the memory of any other process, before reading or writing
to the disk, before changing hardware settings, and so forth. In other words,
the operating system kernel mediates and checks each process’s access to
hardware. This chapter explains the process concept and how the kernel
implements process isolation.

A key consideration is the need to provide protection while still running
application code at high speed. The operating system kernel runs directly on
the processor with unlimited rights. The kernel can perform any operation
available on the hardware. What about applications? They need to run on
the processor with all potentially dangerous operations disabled. To make
this work, hardware needs to provide a bit of assistance, which we will de-
scribe shortly. Throughout the book, there are similar examples of how small
amounts of carefully designed hardware can help make it much easier for the
operating system to provide what users want.

Of course, both the operating system kernel and application processes
running with restricted rights are in fact sharing the same machine — the same
processor, the same memory, and the same disk. When reading this chapter,
keep these two perspectives in mind: when we are running the operating
system kernel, it can do anything; when we are running an application process
on behalf of a user, the process’s behavior is restricted.

Thus, a processor running an operating system is somewhat akin to some-
one with a split personality. When running the operating system kernel, the
processor is like a warden in charge on an insane asylum with complete access
to everything. At other times, the processor runs application code in a pro-
cess — the processor becomes an inmate, wearing a straightjacket locked in a
padded cell by the warden, protected from harming anyone else. Of course, it
is the same processor in both cases, sometimes completely trustworthy and at
other times completely untrusted.

Chapter roadmap: Protection raises several important questions that we will
answer in the rest of the chapter:

e The Process Abstraction. What is a process and how does it differ from
a program? (Section 2.1)

o Dual-Mode Operation. What hardware enables the operating system to
efficiently implement the process abstraction? (Section 2.2)

o Types of Mode Transfer. What causes the processor to switch control from
a user-level program to the kernel? (Section 2.3)

42 Chapter 2 The Kernel Abstraction

Physical
Memory

Machine
Instructions

Data
Process

Edits
@, Source
= Code

Operating Heap
System Copy

Image: Stack
Instructions —

and Data

Executable

Compiler

Machine
Instructions
Operating
Data System
Heap Kernel

Stack

Figure 2.2: A user edits, compiles, and runs a user program. Other programs can also be stored in physical
memory, including the operating system itself.

Implementing Safe Mode Transfer. How do we safely switch between user
level and the kernel? (Section 2.4)

Putting It All Together: x86 Mode Transfer. What happens on an x86 mode
switch? (Section 2.5)

Implementing Secure System Calls. How do library code and the kernel
work together to implement protected procedure calls from the applica-
tion into the kernel? (Section 2.6)

Starting a New Process. How does the operating system kernel start a
new process? (Section 2.7)

Implementing Upcalls. How does the operating system kernel deliver an
asynchronous event to a user process? (Section 2.8)

Case Study: Booting an OS Kernel. What steps are needed to start run-
ning an operating system kernel, to the point where it can create a
process? (Section 2.9)

Case Study: Virtual Machines. Can an operating system run inside a
process? (Section 2.10)

2.1 The Process Abstraction 43

2.1

What is a process?

executable image

execution stack

heap

What is the difference
between a process and
a program?

process control
block

A process combines
execution and
protection.

‘ The Process Abstraction

In the model you are likely familiar with, illustrated in Figure 2.2, a program-
mer types code in some high-level language. A compiler converts that code
into a sequence of machine instructions and stores those instructions in a file,
called the program’s executable image. The compiler also defines any static data
the program needs, along with its initial values, and includes them in the
executable image.

To run the program, the operating system copies the instructions and data
from the executable image into physical memory. The operating system sets
aside a memory region, the execution stack, to hold the state of local variables
during procedure calls. The operating system also sets aside a memory region,
called the heap, for any dynamically allocated data structures the program
might need. Of course, to copy the program into memory, the operating system
itself must already be loaded into memory, with its own stack and heap.

Ignoring protection, once a program is loaded into memory, the operating
system can start it running by setting the stack pointer and jumping to the
program’s first instruction. The compiler itself is just another program: the
operating system starts the compiler by copying its executable image into
memory and jumping to its first instruction.

To run multiple copies of the same program, the operating system can make
multiple copies of the program’s instructions, static data, heap, and stack in
memory. As we describe in Chapter 8, most operating systems reuse memory
wherever possible: they store only a single copy of a program’s instructions
when multiple copies of the program are executed at the same time. Even so, a
separate copy of the program’s data, heap, and stack are needed. For now, we
will keep things simple and assume the operating system makes a separate
copy of the entire program for each process.

Thus, a process is an instance of a program, in much the same way that an
object is an instance of a class in object-oriented programming. Each program
can have zero, one or more processes executing it. For each instance of a
program, there is a process with its own copy of the program in memory.

The operating system keeps track of the various processes on the computer
using a data structure called the process control block, or PCB. The PCB stores all
the information the operating system needs about a particular process: where
it is stored in memory, where its executable image resides on disk, which user
asked it to execute, what privileges the process has, and so forth.

Earlier, we defined a process as an instance of a program executing with
restricted rights. Each of these roles — execution and protection —is important
enough to merit several chapters.

This chapter focuses on protection, and so we limit our discussion to simple
processes, each with one program counter, code, data, heap, and stack.

Some programs consist of multiple concurrent activities, or threads. A
web browser, for example, might need to receive user input at the same time
it is drawing the screen or receiving network input. Each of these separate

44

Chapter 2 The Kernel Abstraction

Processes, lightweight processes, and threads

The word “process", like many terms in computer science, has evolved over
time. The evolution of words can sometimes trip up the unwary — systems
built at different times will use the same word in significantly different ways.

A “process" was originally coined to mean what is now called a “thread" —a
logical sequence of instructions that executes either operating system or appli-
cation code. The concept of a process was developed as a way of simplifying
the correct construction of early operating systems that provided no protection
between application programs.

Organizing the operating system as a cooperating set of processes proved
immensely successful, and soon almost every new operating system was built
this way, including systems that also provided protection against malicious
or buggy user programs. At the time, almost all user programs were simple,
single-threaded programs with only one program counter and one stack, so
there was no confusion. A process was needed to run a program, that is, a
single sequential execution stream with a protection boundary.

As parallel computers became more popular, though, we once again needed
a word for a logical sequence of instructions. A multiprocessor program can
have multiple instruction sequences running in parallel, each with its own
program counter, but all cooperating within a single protection boundary.
For a time, these were called “lightweight processes" (each a sequence of
instructions cooperating inside a protection boundary), but eventually the
word “thread” became more widely used.

This leads to the current naming convention used in almost all modern
operating systems: a process executes a program, consisting of one or more
threads running inside a protection boundary.

activities has its own program counter and stack but operates on the same code
and data as the other threads. The operating system runs multiple threads in
a process, in much the same way that it runs multiple processes in physical
memory. We generalize on the process abstraction to allow multiple activities
in the same protection domain in Chapter 4.

2.2

What hardware
enables the OS to
efficiently implement
the process
abstraction?

‘ Dual-Mode Operation

Once a program is loaded into memory and the operating system starts the
process, the processor fetches each instruction in turn, then decodes and exe-
cutes it. Some instructions compute values, say, by multiplying two registers
and putting the result into another register. Some instructions read or write
locations in memory. Still other instructions, like branches or procedure calls,
change the program counter and thus determine the next instruction to execute.

2.2 Dual-Mode Operation 45

dual-mode
operation

user mode

kernel mode

Branch Address

I— CPU
New PC
Program Instructions
— Counter Fetch and
Execute —|

opcode

L

Figure 2.3: The basic operation of a CPU. Opcode, short for operation code, is the
decoded instruction to be executed, e.g., branch, memory load, or arithmetic operation.

Figure 2.3 illustrates the basic operation of a processor.

How does the operating system kernel prevent a process from harming
other processes or the operating system itself? After all, when multiple pro-
grams are loaded into memory at the same time, what prevents a process
from overwriting another process’s data structures, or even overwriting the
operating system image stored on disk?

If we step back from any consideration of performance, a very simple, safe,
and entirely hypothetical approach would be to have the operating system
kernel simulate, step by step, every instruction in every user process. Instead
of the processor directly executing instructions, a software interpreter would
fetch, decode, and execute each user program instruction in turn. Before
executing each instruction, the interpreter could check if the process had
permission to do the operation in question: is it referencing part of its own
memory, or someone else’s? Is it trying to branch into someone else’s code? Is
it directly accessing the disk, or is it using the correct routines in the operating
system to do so? The interpreter could allow all legal operations while halting
any application that overstepped its bounds.

Now suppose we want to speed up our hypothetical simulator. Most
instructions are perfectly safe, such as adding two registers together and
storing the result in a third register. Can we modify the processor in some way
to allow safe instructions to execute directly on the hardware?

To accomplish this, we implement the same checks as in our hypothetical
interpreter, but in hardware rather than software. This is called dual-mode oper-
ation, represented by a single bit in the processor status register that signifies
the current mode of the processor. In user mode, the processor checks each
instruction before executing it to verify that it is permitted to be performed
by that process. (We describe the specific checks next.) In kernel mode, the
operating system executes with protection checks turned off.

Figure 2.4 shows the operation of a dual-mode processor; the program
counter and the mode bit together control the processor’s operation. In turn,
the mode bit is modified by some instructions, just as the program counter is

46

Chapter 2 The Kernel Abstraction

The kernel vs. the rest of the operating system

The operating system kernel is a crucial piece of an operating system, but it
is only a portion of the overall operating system. In most modern operating
systems, a portion of the operating system runs in user mode as a library linked
into each application. An example is library code that manages an application’s
menu buttons. To encourage a common user interface across applications, most
operating systems provide a library of user interface widgets. Applications
can write their own user interface routines, but most developers choose to
reuse the routines provided by the operating system. This code could run in
the kernel but does not need to do so. If the application crashes, it will not
matter if that application’s menu buttons stop working. The library code (but
not the operating system kernel) shares fate with the rest of the application: a
problem with one has the same effect as a problem with the other.

Likewise, parts of the operating system can run in their own user-level
processes. A window manager is one example. The window manager directs
mouse actions and keyboard input that occurs inside a window to the correct
application, and the manager also ensures that each application modifies only
that application’s portion of the screen, and not the operating system’s menu
bar or any other application’s window. Without this restriction, a malicious
application could potentially take control of the machine. For example, a
virus could present a login prompt that looked identical to the system login,
potentially inducing users to disclose their passwords to the attacker.

Why not include the entire operating system —the library code and any
user-level processes —in the kernel itself? While that might seem more logical,
one reason is that it is often easier to debug user-level code than kernel code.
The kernel can use low-level hardware to implement debugging support for
breakpoints and for single stepping through application code; to single step
the kernel requires an even lower-level debugger running underneath the
kernel. The difficulty of debugging operating system kernels was the original
motivation behind the development of virtual machines.

More importantly, the kernel must be trusted, as it has full control over the
hardware. Any error in the kernel can corrupt the disk, the memory of some
unrelated application, or simply crash the system. By separating out code
that does not need to be in the kernel, the operating system can become more
reliable —a bug in the window system is bad enough, but it would be even
worse if it could corrupt the disk. This illustrates the principle of least privilege,
that security and reliability are enhanced if each part of the system has exactly
the privileges it needs to do its job, and no more.

modified by some instructions.

What hardware is needed to let the operating system kernel protect appli-
cations and users from one another, yet also let user code run directly on the
processor? At a minimum, the hardware must support three things:

2.2 Dual-Mode Operation 47

2.21

What instructions
can’t a process
execute?

Branch Address

L

CPU
Program Instructions
Counter Fetch and
— | Execute |}—

I__) New PC

Handler PC

New Mode

Select

Mode Mode

opcode

Figure 2.4: The operation of a CPU with kernel and user modes.

o Privileged Instructions. All potentially unsafe instructions are prohibited
when executing in user mode. (Section 2.2.1)

e Memory Protection. All memory accesses outside of a process’s valid
memory region are prohibited when executing in user mode. (Sec-
tion 2.2.2)

o Timer Interrupts. Regardless of what the process does, the kernel must
have a way to periodically regain control from the current process. (Sec-
tion 2.2.3)

In addition, the hardware must also provide a way to safely transfer control
from user mode to kernel mode and back. As the mechanisms to do this are
relatively involved, we defer the discussion of that topic to Sections 2.3 and
2.4.

Privileged Instructions

Process isolation is possible only if there is a way to limit programs running
in user mode from directly changing their privilege level. We discuss in Sec-
tion 2.3 that processes can indirectly change their privilege level by executing
a special instruction, called a system call, to transfer control into the kernel at a
fixed location defined by the operating system. Other than transferring control
into the operating system kernel (that is, in effect, becoming the kernel) at
these fixed locations, an application process cannot change its privilege level.

48

Chapter 2 The Kernel Abstraction

The processor status register and privilege levels

Conceptually, the kernel/user mode is a one-bit register. When set to 1, the
processor is in kernel mode and can do anything. When set to 0, the processor
is in user mode and is restricted. On most processors, the kernel/user mode is
stored in the processor status register. This register contains flags that control
the processor’s operation and is typically not directly accessible to application
code. Rather, flags are set or reset as a by-product of executing instructions.
For example, the hardware automatically saves the status register to memory
when an interrupt occurs because otherwise the interrupt handler code would
inadvertently overwrite its contents.

The kernel/user mode bit is one flag in the processor status register, set
whenever the kernel is entered and reset whenever the kernel switches back
to user mode. Other flags include condition codes, set as a side effect of arith-
metic operations, to allow a more compact encoding of conditional branch
instructions. Still other flags can specify whether the processor is executing
with 16-bit, 32-bit, or 64-bit addresses. The specific contents of the processor
status register are processor architecture dependent.

Some processor architectures, including the Intel x86, support more than two
privilege levels in the processor status register (the x86 supports four privilege
levels). The original reason for this was to allow the operating system kernel
to be separated into two layers: (i) a core with unlimited access to the machine,
and (ii) an outer layer restricted from certain operations, but with more power
than completely unprivileged application code. This way, bugs in one part of
the operating system kernel might not crash the entire system. However, to
our knowledge, neither MacOS, Windows, nor Linux make use of this feature.

A potential future use for multiple privilege levels would be to simplify
running an operating system as an application, or virtual machine, on top of
another operating system. Applications running on top of the virtual machine
operating system would run at user level; the virtual machine would run
at some intermediate level; and the true kernel would run in kernel mode.
Of course, with only four levels, this does not work for a virtual machine
running on a virtual machine running on a virtual machine. For our discussion,
we assume the simpler and more universal case of two levels of hardware
protection.

Other instructions are also limited to use by kernel code. The application
cannot be allowed to change the set of memory locations it can access; we
discuss in Section 2.2.2 how limiting an application to accessing only its own
memory is essential to preventing it from either intentionally, or accidentally,
corrupting or misusing the data or code from other applications or the operat-
ing system. Further, applications cannot disable processor interrupts, as we
will explain in Section 2.2.3.

Instructions available in kernel mode, but not in user mode, are called

2.2 Dual-Mode Operation 49

privileged
instruction

EXAMPLE

ANSWER

2.2.2

How does the
hardware limit a
program to only

accessing its own
memory?

privileged instructions. The operating system kernel must be able to execute
these instructions to do its work — it needs to change privilege levels, adjust
memory access, and disable and enable interrupts. If these instructions were
available to applications, then a rogue application would in effect have the
power of the operating system kernel.

Thus, while application programs can use only a subset of the full instruc-
tion set, the operating system executes in kernel mode with the full power of
the hardware.

What happens if an application attempts to access restricted memory or
attempts to change its privilege level? Such actions cause a processor exception.
Unlike taking an exception in a programming language where the language
runtime and user code handles the exception, a processor exception causes the
processor to transfer control to an exception handler in the operating system
kernel. Usually, the kernel simply halts the process after a privilege violation.

What could happen if applications were allowed to jump into kernel mode at
any location in the kernel?

Although it might seem that the worst that could happen would be that
the operating system would crash (bad enough!), this might also allow a
malicious application to gain access to privileged data or possibly control
over the machine. The operating system kernel implements a set of privileged
services on behalf of applications. Typically, one of the first steps in a kernel
routine is to verify whether the user has permission to perform the operation;
for example, the file system checks if the user has permission to read a file
before returning the data. If an application can jump past the permission check,
it could potentially evade the kernel’s security limits. O

Memory Protection

To run an application process, both the operating system and the application
must be resident in memory at the same time. The application must be in
memory in order to execute, while the operating system must be there to start
the program and to handle any interrupts, processor exceptions, or system
calls that happen while the program runs. Further, other application processes
may also be stored in memory; for example, you may read email, download
songs, Skype, instant message, and browse the web at the same time.

To make memory sharing safe, the operating system must be able to con-
figure the hardware so that each application process can read and write only
its own memory, not the memory of the operating system or any other appli-
cation. Otherwise, an application could modify the operating system kernel’s
code or data to gain control over the system. For example, the application
could change the login program to give the attacker full system administrator
privileges. While it might seem that read-only access to memory is harmless,
recall that operating systems need to provide both security and privacy. Kernel
data structures —such as the file system buffer —may contain private user

50

Chapter 2 The Kernel Abstraction

base and bound
memory protection

MS/DOS and memory protection

As an illustration of the power of memory protection, MS/DOS was an early
Microsoft operating system that did not provide it. Instead, user programs
could read and modify any memory location in the system, including operat-
ing system data structures. While this was seen as acceptable for a personal
computer that was only used by a single person at a time, there were a number
of downsides. One obvious problem was system reliability: application bugs
frequently crashed the operating system or corrupted other applications. The
lack of memory protection also made the system more vulnerable to computer
viruses.

Over time, some applications took advantage of the ability to change operat-
ing system data structures, for example, to change certain control parameters
or to directly manipulate the frame buffer for controlling the display. As a
result, changing the operating system became quite difficult; either the new
version could not run the old applications, limiting its appeal, or it needed
to leave these data structures in precisely the same place as they were in the
old version. In other words, memory protection is not only useful for relia-
bility and security; it also helps to enforce a well-defined interface between
applications and the operating system kernel to aid future evolvability and
portability.

data. Likewise, user passwords may be stored in kernel memory while they
are being verified.

How does the operating system prevent a user program from accessing
parts of physical memory? We discuss a wide variety of different approaches
in Chapter 8, but early computers pioneered a simple mechanism to provide
protection. We describe it now to illustrate the general principle.

With this approach, a processor has two extra registers, called base and
bound. The base specifies the start of the process’s memory region in physical
memory, while the bound gives its endpoint (Figure 2.5). These registers can
be changed only by privileged instructions, that is, by the operating system
executing in kernel mode. User-level code cannot change their values.

Every time the processor fetches an instruction, it checks the address of
the program counter to see if it is between the base and the bound registers. If
so, the instruction fetch is allowed to proceed; otherwise, the hardware raises
an exception, suspending the program and transferring control back to the
operating system kernel. Although it might seem extravagant to perform two
extra comparisons for each instruction, memory protection is worth the cost.
In fact, we will discuss much more sophisticated and “extravagant” memory
protection schemes in Chapter 8.

Likewise, for instructions that read or write data to memory, the processor
checks each memory reference against the base and bound registers, generat-

2.2 Dual-Mode Operation 51

Physical
Memory

Base

Physical
Address

Processor |

Base+

2\ Bound
&

|
e\
J

Raise
Exception

Figure 2.5: Base and bound memory protection using physical addresses. Every code and data address
generated by the program is first checked to verify that its address lies within the memory region of the
process.

ing a processor exception if the boundaries are violated. Complex instructions,
such as a block copy instruction, must check every location touched by the in-
struction, to ensure that the application does not inadvertently or maliciously
read or write to a buffer that starts in its own region but that extends into the
kernel’s region. Otherwise, applications could read or overwrite key parts of
the operating system code or data and thereby gain control of the system.

The operating system kernel executes without the base and bound regis-
ters, allowing it to access any memory on the system —the kernel’s memory
or the memory of any application process running on the system. Because
applications touch only their own memory, the kernel must explicitly copy any
input or output into or out of the application’s memory region. For example, a
simple program might print “hello world". The kernel must copy the string
out of the application’s memory region into the screen buffer.

Memory allocation with base and bound registers is simple, analogous to
heap memory allocation. When a program starts up, the kernel finds a free
block of contiguous physical memory with enough room to store the entire
program, its data, heap and execution stack. If the free block is larger than
needed, the kernel returns the remainder to the heap for allocation to some
other process.

Using physically addressed base and bound registers can provide protec-
tion, but this does not provide some important features:

o Expandable heap and stack. With a single pair of base and bound regis-
ters per process, the amount of memory allocated to a program is fixed
when the program starts. Although the operating system can change the
bound, most programs have two (or more) memory regions that need

52

Chapter 2 The Kernel Abstraction

Memory-mapped devices

On most computers, the operating system controls input/output devices —
such as the disk, network, or keyboard —by reading and writing to special
memory locations. Each device monitors the memory bus for the address
assigned to it, and when it sees its address, the device triggers the desired I/O
operation.

The operating system can use memory protection to prevent user-level
processes from accessing these special memory locations. Thus, memory pro-
tection has the added advantage of limiting direct access to input/output
devices by user code. By limiting each process to just its own memory loca-
tions, the kernel prevents processes from directly reading or writing to the
disk controller or other devices. In this way, a buggy or malicious application
cannot modify the operating system’s image stored on disk, and a user cannot
gain access to another user’s files without first going through the operating
system to check file permissions.

to independently expand depending on program behavior. The execu-
tion stack holds procedure local variables and grows with the depth of
the procedure call graph; the heap holds dynamically allocated objects.
Most systems today grow the heap and the stack from opposite sides of
program memory; this is difficult to accommodate with a pair of base
and bound registers.

e Memory sharing. Base and bound registers do not allow memory to be
shared between different processes, as would be useful for sharing code
between multiple processes running the same program or using the
same library.

o Physical memory addresses. When a program is compiled and linked,
the addresses of its procedures and global variables are set relative to
the beginning of the executable file, that is, starting at zero. With the
mechanism we have just described using base and bound registers, each
program is loaded into physical memory at runtime and must use those
physical memory addresses. Since a program may be loaded at different
locations depending on what other programs are running at the same
time, the kernel must change every instruction and data location that
refers to a global address, each time the program is loaded into memory.

e Memory fragmentation. Once a program starts, it is nearly impossible
to relocate it. The program might store pointers in registers or on the
execution stack (for example, the program counter to use when returning
from a procedure), and these pointers need to be changed to move
the program to a different region of physical memory. Over time, as

2.2 Dual-Mode Operation 53

virtual address

Virtual Addresses Physical
(Process Layout) Memory
Code \
\ Code
Data
Dat
Heap \ aa
l \ Heap
1 f Stack
Stack f

Figure 2.6: Virtual addresses allow the stack and heap regions of a process to grow
independently. To grow the heap, the operating system can move the heap in physical
memory without changing the heap’s virtual address.

applications start and finish at irregular times, memory will become
increasingly fragmented. Potentially, memory fragmentation may reach
a point where there is not enough contiguous space to start a new process,
despite sufficient free memory in aggregate.

For these reasons, most modern processors introduce a level of indirection,
called virtual addresses. With virtual addresses, every process’s memory starts
at the same place, e.g., zero. Each process thinks that it has the entire machine
to itself, although obviously that is not the case in reality. The hardware
translates these virtual addresses to physical memory locations. A simple
algorithm would be to add the base register to every virtual address so that
the process can use virtual addresses starting from zero.

In practice, modern systems use much more complex algorithms to trans-
late between virtual and physical addresses. The layer of indirection provided
by virtual addresses gives operating systems enormous flexibility to efficiently
manage physical memory. For example, many systems with virtual addresses
allocate physical memory in fixed-sized, rather than variable-sized, chunks to
reduce fragmentation.

Virtual addresses can also let the heap and the stack start at separate ends
of the virtual address space so they can grow according to program need
(Figure 2.6). If either the stack or heap grows beyond its initially allocated
region, the operating system can move it to a different larger region in physical
memory but leave it at the same virtual address. The expansion is completely
transparent to the user process. We discuss virtual addresses in more depth in
Chapter 8.

54

Chapter 2 The Kernel Abstraction

How can we tell ifa
machine uses virtual
addresses?

EXAMPLE

ANSWER

int staticVar = 0; // a static variable
main () {
staticVar += 1;

/! sleep causes the program to wait for x seconds
sleep (10);
printf ("Address: %x; Value: %d\n", &staticVar, staticVar);

}

Produces:
Address: 5328; Value: 1

Figure 2.7: A simple C program whose output illustrates the difference between
execution in physical memory versus virtual memory. When multiple copies of this
program run simultaneously, the output does not change.

Figure 2.7 lists a simple test program to verify that a computer supports
virtual addresses. The program has a single static variable; it updates the value
of the variable, waits for a few seconds, and then prints the location of the
variable and its value.

With virtual addresses, if multiple copies of this program run simulta-
neously, each copy of the program will print exactly the same result. This
would be impossible if each copy were directly addressing physical memory
locations. In other words, each instance of the program appears to run in its
own complete copy of memory: when it stores a value to a memory location, it
alone sees its changes to that location. Other processes change their own copies
of the memory location. In this way, a process cannot alter any other process’s
memory, because it has no way to reference the other process’s memory; only
the kernel can read or write the memory of a process other than itself.

This is very much akin to a set of television shows, each occupying their
own universe, even though they all appear on the same television. Events
in one show do not (normally) affect the plot lines of other shows. Sitcom
characters are blissfully unaware that Jack Bauer has just saved the world
from nuclear Armageddon. Of course, just as television shows can from time
to time share characters, processes can also communicate if the kernel allows
it. We will discuss how this happens in Chapter 3.

Suppose we have a “perfect” object-oriented language and compiler in which
only an object’s methods can access the data inside the object. If the operat-
ing system runs only programs written in that language, would it still need
hardware memory address protection?

In theory, no, but in practice, yes. The compiler would be responsible for
ensuring that no application program read or modified data outside of its
own objects. This requires, for example, the language runtime to do garbage
collection: once an object is released back to the heap (and possibly reused by
some other application), the application cannot continue to hold a pointer to
the object.

2.2 Dual-Mode Operation 55

Address randomization

Computer viruses often work by attacking hidden vulnerabilities in operat-
ing system and server code. For example, if the operating system developer
forgets to check the length of a user string before copying it into a buffer, the
copy can overwrite the data stored immediately after the buffer. If the buffer is
stored on the stack, this might allow a malicious user to overwrite the return
program counter from the procedure; the attacker can then cause the server to
jump to an arbitrary point (for example, into code embedded in the string).
These attacks are easier to mount when a program uses the same locations for
the same variables each time it runs.

Most operating systems, such as Linux, MacOS, and Windows, combat
viruses by randomizing (within a small range) the virtual addresses that a
program uses each time it runs. This is called address space layout randomization.
A common technique is to pick a slightly different start address for the heap
and stack for each execution. Thus, in Figure 2.7, if instead we printed the
address of a procedure local variable, the address might change from run to
run, even though the value of the variable would still be 1.

Some systems have begun to randomize procedure and static variable lo-
cations each, as well as the offset between adjacent procedure records on the
stack to make it harder to force the system to jump to the attacker’s code.
Nevertheless, each process appears to have its own copy of memory, disjoint
from all other processes.

In practice, this approach means that system security depends on the
correct operation of the compiler in addition to the operating system kernel.
Any bug in the compiler or language runtime becomes a possible way for
an attacker to gain control of the machine. Many languages have extensive
runtime libraries to simplify the task of writing programs in that language;
often these libraries are written for performance in a language closer to the
hardware, such as C. Any bug in a library routine also becomes a possible
means for an attacker to gain control.

Although it may seem redundant, many systems use both language-level
protection and process-level protection. For example, Google’s Chrome web
browser creates a separate process (e.g., one per browser tab) to interpret
the HTML, Javascript, or Java on a web page. This way, a malicious attacker
must compromise both the language runtime as well as the operating system
process boundary to gain control of the client machine. O

56

Chapter 2 The Kernel Abstraction

223

How does the kernel
regain control from a
runaway process?

hardware timer

MacOS and preemptive scheduling

Until 2002, Apple’s MacOS lacked the ability to force a process to yield the
processor back to the kernel. Instead, all application programmers were told
to design their systems to periodically call into the operating system to check
if there was other work to be done. The operating system would then save the
state of the original process, switch control to another application, and return
only when it again became the original process’s turn. This had a drawback: if
a process failed to yield, e.g., because it had a bug and entered an infinite loop,
the operating system kernel had no recourse. The user needed to reboot the
machine to return control to the operating system. This happened frequently
enough that it was given its own name: the “spinning cursor of death.”

Timer Interrupts

Process isolation also requires hardware to provide a way for the operating
system kernel to periodically regain control of the processor. When the op-
erating system starts a user-level program, the process is free to execute any
user-level (non-privileged) instructions it chooses, call any function in the
process’s memory region, load or store any value to its memory, and so forth.
To the user program, it appears to have complete control of the hardware
within the limits of its memory region.

However, this too is only an illusion. If the application enters an infinite
loop, or if the user simply becomes impatient and wants the system to stop
the application, then the operating system must be able to regain control.
Of course, the operating system needs to execute instructions to decide if it
should stop the application, but if the application controls the processor, the
operating system by definition is not running on that processor.

The operating system also needs to regain control of the processor in
normal operation. Suppose you are listening to music on your computer,
downloading a file, and typing at the same time. To smoothly play the music,
and to respond in a timely way to user input, the operating system must be
able to regain control to switch to a new task.

Almost all computer systems include a device called a hardware timer,
which can be set to interrupt the processor after a specified delay (either in
time or after some number of instructions have been executed). Each timer
interrupts only one processor, so a multiprocessor will usually have a separate
timer for each CPU. The operating system might set each timer to expire
every few milliseconds; human reaction time is a few hundred of milliseconds.
Resetting the timer is a privileged operation, accessible only within the kernel,
so that the user-level process cannot inadvertently or maliciously disable the
timer.

When the timer interrupt occurs, the hardware transfers control from the

2.3 Types of Mode Transfer 57

EXAMPLE

ANSWER

user process to the kernel running in kernel mode. Other hardware interrupts,
such as to signal the processor that an I/O device has completed its work,
likewise transfer control from the user process to the kernel. A timer or other
interrupt does not imply that the program has an error; in most cases, after
resetting the timer, the operating system resumes execution of the process,
setting the mode, program counter and registers back to the values they had
immediately before the interrupt occurred. We discuss the hardware and
kernel mechanisms for implementing interrupts in Section 2.4.

How does the kernel know if an application is in an infinite loop?

It doesn’t. Typically, the operating system will terminate a process only when
requested by the user or system administrator, e.g., because the application
has become non-responsive to user input. The operating system needs to be
able to regain control to be able to ask the user if she wants to shut down a
particular process. U

2.3

2.3.1

What causes execution
to switch into the
kernel?

trap

interrupt

How does an I/O
device get the
processor’s attention?

‘ Types of Mode Transfer

Once the kernel has placed a user process in a carefully constructed sandbox,
the next question is how to safely transition from executing a user process to
executing the kernel, and vice versa. These transitions are not rare events. A
high-performance web server, for example, might switch between user mode
and kernel mode thousands of times per second. Thus, the mechanism must
be both fast and safe, leaving no room for malicious or buggy programs to
corrupt the kernel, either intentionally or inadvertently.

User to Kernel Mode

We first focus on transitions from user mode to kernel mode; as we will see,
transitioning in the other direction works by “undo"-ing the transition from
the user process into the kernel.

There are three reasons for the kernel to take control from a user pro-
cess: interrupts, processor exceptions, and system calls. Interrupts occur asyn-
chronously — that is, they are triggered by an external event and can cause a
transfer to kernel mode after any user-mode instruction.

Processor exceptions and system calls are synchronous events triggered by
process execution. We use the term trap to refer to any synchronous transfer of
control from user mode to the kernel; some systems use the term more gener-
ically for any transfer of control from a less privileged to a more privileged
level.

o Interrupts. An interrupt is an asynchronous signal to the processor that
some external event has occurred that may require its attention. As the
processor executes instructions, it checks for whether an interrupt has

	front-cover
	body
	back-cover

