Why is studying
operating systems
useful?

Introduction

How do we construct reliable, portable, efficient, and secure computer sys-
tems? An essential component is the computer’s operating system — the soft-
ware that manages a computer’s resources.

First, the bad news: operating systems concepts are among the most com-
plex in computer science. A modern, general-purpose operating system can
exceed 50 million lines of code, or in other words, more than a thousand times
longer than this textbook. New operating systems are being written all the
time: if you use an e-book reader, tablet, or smartphone, an operating system
is managing your device. Given this inherent complexity, we limit our focus
to the essential concepts that every computer scientist should know.

Now the good news: operating systems concepts are also among the most
accessible in computer science. Many topics in this book will seem familiar to
you—if you have ever tried to do two things at once, or picked the “wrong”
line at a grocery store, or tried to keep a roommate or sibling from messing
with your things, or succeeded at pulling off an April Fool’s joke. Each of these
activities has an analogue in operating systems. It is this familiarity that gives
us hope that we can explain how operating systems work in a single textbook.
All we assume of the reader is a basic understanding of the operation of a
computer and the ability to read pseudo-code.

We believe that understanding how operating systems work is essential
for any student interested in building modern computer systems. Of course,
everyone who uses a computer or a smartphone —or even a modern toaster —
uses an operating system, so understanding the function of an operating
system is useful to most computer scientists. This book aims to go much
deeper than that, to explain operating system internals that we rely on every

3

Chapter 1 Introduction

What challenges does
a web client or web
server operating
system face?

(1) ()

HTTP GET index.html| Read file: index.html

Client Server index.html

(4) 3)

HTTP web page File data

Figure 1.1: The operation of a web server. The client machine sends an HTTP GET
request to the web server. The server decodes the packet, reads the file, and sends the
contents back to the client.

day without realizing it.

Software engineers use many of the same technologies and design patterns
as those used in operating systems to build other complex systems. Whether
your goal is to work on the internals of an operating system kernel —or
to build the next generation of software for cloud computing, secure web
browsers, game consoles, graphical user interfaces, media players, databases,
or multicore software — the concepts and abstractions needed for reliable,
portable, efficient and secure software are much the same. In our experience,
the best way to learn these concepts is to study how they are used in operat-
ing systems, but we hope you will apply them to a much broader range of
computer systems.

To get started, consider the web server in Figure 1.1. Its behavior is amaz-
ingly simple: it receives a packet containing the name of the web page from the
network, as an HTTP GET request. The web server decodes the packet, reads
the file from disk, and sends the contents of the file back over the network to
the user’s machine.

Part of an operating system’s job is to make it easy to write applications
like web servers. But digging a bit deeper, this simple story quickly raises as
many questions as it answers:

e Many web requests involve both data and computation. For example,
the Google home page presents a simple text box, but each search query
entered in that box consults data spread over many machines. To keep
their software manageable, web servers often invoke helper applications,
e.g., to manage the actual search function. The main web server must be
able to communicate with the helper applications for this to work. How
does the operating system enable multiple applications to communicate
with each other?

e What if two users (or a million) request a web page from the server
at the same time? A simple approach might be to handle each request

Chapter 1 Introduction 5

in turn. If any individual request takes a long time, however, every
other request must wait for it to complete. A faster, but more complex,
solution is to multitask: to juggle the handling of multiple requests at once.
Multitasking is especially important on modern multicore computers,
where each processor can handle a different request at the same time.
How does the operating system enable applications to do multiple things
at once?

o For better performance, the web server might want to keep a copy, some-
times called a cache, of recently requested pages. In this way, if multiple
users request the same page, the server can respond to subsequent re-
quests more quickly from the cache, rather than starting each request
from scratch. This requires the web server to coordinate, or synchronize,
access to the cache’s data structures by possibly thousands of web re-
quests at the same time. How does the operating system synchronize
application access to shared data?

e To customize and animate the user experience, web servers typically
send clients scripting code along with the contents of the web page. But
this means that clicking on a link can cause someone else’s code to run
on your computer. How does the client operating system protect itself
from compromise by a computer virus surreptitiously embedded into
the scripting code?

e Suppose the web site administrator uses an editor to update the web
page. The web server must be able to read this file. How does the operat-
ing system store the bytes on disk so that the web server can find and
read them?

o Taking this a step further, the administrator may want to make a con-
sistent set of changes to the web site so that embedded links are not
left dangling, even temporarily. How can the operating system let users
make a set of changes to a web site, so that requests see either the old or
new pages, but not a combination of the two?

o What happens when the client browser and the web server run at differ-
ent speeds? If the server tries to send a web page to the client faster than
the client can render the page on the screen, where are the contents of
the file stored in the meantime? Can the operating system decouple the
client and server so that each can run at its own speed without slowing
the other down?

o As demand on the web server grows, the administrator may need to
move to more powerful hardware, with more memory, more proces-
sors, faster network devices, and faster disks. To take advantage of new
hardware, must the web server be re-written each time, or can it be
written in a hardware-independent fashion? What about the operating
system —must it be re-written for every new piece of hardware?

Chapter 1 Introduction

We could go on, but you get the idea. This book will help you understand
the answers to these and many more questions.

Chapter roadmap: The rest of this chapter discusses three topics in detail:

e Operating System Definition. What is an operating system, and what
does it do? (Section 1.1)

e Operating System Evaluation. What design goals should we look for in
an operating system? (Section 1.2)

e Operating Systems: Past, Present, and Future. How have operating sys-
tems evolved, and what new functionality are we likely to see in future
operating systems? (Section 1.3)

1.1 ‘ What Is An Operating System?

operating system

An operating system (OS) is the layer of software that manages a computer’s
resources for its users and their applications. Operating systems run in a
wide range of computer systems. They may be invisible to the end user,
controlling embedded devices such as toasters, gaming systems, and the many
computers inside modern automobiles and airplanes. They are also essential
to more general-purpose systems such as smartphones, desktop computers,
and servers.

Our discussion will focus on general-purpose operating systems because
the technologies they need are a superset of those needed for embedded
systems. Increasingly, operating systems technologies developed for general-
purpose computing are migrating into the embedded sphere. For example,
early mobile phones had simple operating systems to manage their hardware
and to run a handful of primitive applications. Today, smartphones — phones
capable of running independent third-party applications—are the fastest
growing segment of the mobile phone business. These devices require much
more complete operating systems, with sophisticated resource management,
multi-tasking, security and failure isolation.

Likewise, automobiles are increasingly software controlled, raising a host
of operating system issues. Can anyone write software for your car? What
if the software fails while you are driving down the highway? Can a car’s
operating system be hijacked by a computer virus? Although this might seem
far-fetched, researchers recently demonstrated that they could remotely turn
off a car’s braking system through a computer virus introduced into the car’s
computers via a hacked car radio. A goal of this book is to explain how to
build more reliable and secure computer systems in a variety of contexts.

For general-purpose systems, users interact with applications, applica-
tions execute in an environment provided by the operating system, and the
operating system mediates access to the underlying hardware, as shown in

1.1 What Is An Operating System? 7

What roles does an OS
play?

APP APP APP

Operating System

Hardware

Figure 1.2: A general-purpose operating system is a layer of software that manages a
computer’s resources for its users and applications.

Figure 1.2 and expanded in Figure 1.3. How can an operating system run
multiple applications? For this, operating systems need to play three roles:

1. Referee. Operating systems manage resources shared between different
applications running on the same physical machine. For example, an
operating system can stop one program and start another. Operating
systems isolate applications from each other, so a bug in one application
does not corrupt other applications running on the same machine. An
operating system must also protect itself and other applications from
malicious computer viruses. And since the applications share physical
resources, the operating system needs to decide which applications get
which resources and when.

2. lllusionist. Operating systems provide an abstraction of physical hard-
ware to simplify application design. To write a “Hello world!” program,
you do not need (or want!) to think about how much physical mem-
ory the system has, or how many other programs might be sharing the
computer’s resources. Instead, operating systems provide the illusion
of nearly infinite memory, despite having a limited amount of physical
memory. Likewise, they provide the illusion that each program has the
computer’s processors entirely to itself. Obviously, the reality is quite
different! These illusions let you write applications independently of the
amount of physical memory on the system or the physical number of
processors. Because applications are written to a higher level of abstrac-
tion, the operating system can invisibly change the amount of resources
assigned to each application.

3. Glue. Operating systems provide a set of common services that facilitate

Chapter 1 Introduction

User-mode
APP APP APP
System System System
Library Library Library
Kernel-user Interface
Kernel-mode (Abstract virtual machine)

File System Virtual Memory

TCP/IP Networking Scheduling

Hardware Abstraction Layer

Hardware-Specific Software
and Device Drivers

Hardware — (Processors) (Address Translation
Disk
(Graphics Processor) (Network

Figure 1.3: This shows the structure of a general-purpose operating system, as an
expansion on the simple view presented in Figure 1.2. At the lowest level, the
hardware provides processors, memory, and a set of devices for storing data and
communicating with the outside world. The hardware also provides primitives that
the operating system can use for fault isolation and synchronization. The operating
system runs as the lowest layer of software on the computer. It contains both a
device-specific layer for managing the myriad hardware devices and a set of
device-independent services provided to applications. Since the operating system
must isolate malicious and buggy applications from other applications or the
operating system itself, much of the operating system runs in a separate execution
environment protected from application code. A portion of the operating system can
also run as a system library linked into each application. In turn, applications run in an
execution context provided by the operating system kernel. The application context is
much more than a simple abstraction on top of hardware devices: applications execute
in a virtual environment that is more constrained (to prevent harm), more powerful (to

mask hardware limitations), and more useful (via common services) than the
underlying hardware.

1.1 What Is An Operating System? 9

1.1.1

What happens when
multiple applications
share resources?

sharing among applications. As a result, cut and paste works uniformly
across the system; a file written by one application can be read by an-
other. Many operating systems provide common user interface routines
so applications can have the same “look and feel.” Perhaps most impor-
tantly, operating systems provide a layer separating applications from
hardware input and output (I/O) devices so applications can be written
independently of the specific keyboard, mouse, and disk drive in use on
a particular computer.

We next discuss these three roles in greater detail.

Resource Sharing: Operating System as Referee

Sharing is central to most uses of computers. Right now, my laptop is running
a browser, podcast library, text editor, email program, document viewer, and
newspaper. The operating system must somehow keep all of these activities
separate, yet allow each the full capacity of the machine if the others are not
running. At a minimum, when one program stops running, the operating
system should let me run another. Better still, the operating system should
let multiple applications run at the same time, so I can read email while I
download a security patch to the system software.

Even individual applications can do multiple tasks at once. For instance,
a web server’s responsiveness improves if it handles multiple requests con-
currently rather than waiting for each to complete before starting the next
one. The same holds for the browser —it is more responsive if it can start
rendering a page while the rest of the page is transferring. On multiprocessors,
the computation inside a parallel application can be split into separate units
that can be run independently for faster execution. The operating system itself
is an example of software written to do multiple tasks at once. As we will
illustrate throughout the book, the operating system is a customer of its own
abstractions.

Sharing raises several challenges for an operating system:

o Resource allocation. The operating system must keep all simultaneous
activities separate, allocating resources to each as appropriate. A com-
puter usually has only a few processors and a finite amount of memory,
network bandwidth, and disk space. When there are multiple tasks to
do at the same time, how should the operating system decide how many
resources to give to each? Seemingly trivial differences in how resources
are allocated can impact user-perceived performance. As we will see
in Chapter 9, an operating system that allocates too little memory to a
program slows down not only that particular program, but often other
applications as well.

To illustrate the difference between execution on a physical machine
versus on the abstract machine provided by the operating system, what
should happen if an application executes an infinite loop?

10

Chapter 1 Introduction

fault isolation

while (true) {

}

i

If programs ran directly on raw hardware, this code fragment would
lock up the computer, making it completely non-responsive to user input.
If the operating system ensures that each program gets its own slice of
the computer’s resources, a specific application might lock up, but other
programs could proceed unimpeded. Additionally, the user could ask
the operating system to force the looping program to exit.

Isolation. An error in one application should not disrupt other applica-
tions, or even the operating system itself. This is called fault isolation.
Anyone who has taken an introductory computer science class knows
the value of an operating system that can protect itself and other appli-
cations from programmer bugs. Debugging would be vastly harder if an
error in one program could corrupt data structures in other applications.
Likewise, downloading and installing a screen saver or other application
should not crash unrelated programs, provide a way for a malicious
attacker to surreptitiously install a computer virus, or let one user access
or change another’s data without permission.

Fault isolation requires restricting the behavior of applications to less
than the full power of the underlying hardware. Otherwise, any appli-
cation downloaded off the web, or any script embedded in a web page,
could completely control the machine. Any application could install
spyware into the operating system to log every keystroke you type, or
record the password to every web site you visit. Without fault isolation
provided by the operating system, any bug in any program might irre-
trievably corrupt the disk. Error-prone or malignant applications could
cause all sorts of havoc.

Communication. The flip side of isolation is the need for communication
between different applications and different users. For example, a web
site may be implemented by a cooperating set of applications: one to
select advertisements, another to cache recent results, yet another to
fetch and merge data from disk, and several more to cooperatively scan
the web for new content to index. For this to work, the various programs
must communicate with one another. If the operating system prevents
bugs and malicious users and applications from affecting other users
and their applications, how does it also support communication to share
results? In setting up boundaries, an operating system must also allow
those boundaries to be crossed in carefully controlled ways when the
need arises.

In its role as referee, an operating system is somewhat akin to that of a
particularly patient kindergarten teacher. It balances needs, separates conflicts,

1.1 What Is An Operating System? 11

1.1.2

What happens when
applications need more
resources than the
hardware provides?

virtualization

virtual machine

guest operating
system

What is the purpose of
a virtual machine?

and facilitates sharing. One user should not be allowed to monopolize system
resources or to access or corrupt another user’s files without permission;
a buggy application should not be able to crash the operating system or
other unrelated applications; and yet, applications must also work together.
Enforcing and balancing these concerns is a central role of the operating
system.

Masking Limitations: Operating System as lllusionist

A second important role of an operating system is to mask the restrictions in-
herent in computer hardware. Physical constraints limit hardware resources —
a computer has only a limited number of processors and a limited amount of
physical memory, network bandwidth, and disk. Further, since the operating
system must decide how to divide its fixed resources among the various ap-
plications running at each moment, a particular application can have differing
amounts of resources from time to time, even when running on the same hard-
ware. While some applications are designed to take advantage of a computer’s
specific hardware configuration and resource assignment, most programmers
prefer to use a higher level of abstraction.

Virtualization provides an application with the illusion of resources that
are not physically present. For example, the operating system can provide the
abstraction that each application has a dedicated processor, even though at
a physical level there may be only a single processor shared among all the
applications running on the computer.

With the right hardware and operating system support, most physical
resources can be virtualized. For example, hardware provides only a small,
finite amount of memory, while the operating system provides applications
the illusion of a nearly infinite amount of virtual memory. Wireless networks
drop or corrupt packets; the operating system masks these failures to provide
the illusion of a reliable service. At a physical level, magnetic disk and flash
RAM support block reads and writes, where the size of the block depends
on the physical device characteristics, addressed by a device-specific block
number. Most programmers prefer to work with byte-addressable files orga-
nized by name into hierarchical directories. Even the type of processor can be
virtualized to allow the same, unmodified application to run on a smartphone,
tablet, and laptop computer.

Pushing this one step further, some operating systems virtualize the entire
computer, running the operating system as an application on top of another
operating system (see Figure 1.4). This is called creating a virtual machine. The
operating system running in the virtual machine, called the guest operating
system, thinks it is running on a real, physical machine, but this is an illusion
presented by the true operating system running underneath.

One benefit of a virtual machine is application portability. If a program
runs only on an old version of an operating system, it can still work on a new
system running a virtual machine. The virtual machine hosts the application
on the old operating system, running atop the new one. Virtual machines also

12

Chapter 1 Introduction

1.1.3

Can we raise the level
of abstraction above
bare hardware?

APP APP
APP Guest Guest
Operating Operating
System System

Operating System

Hardware

Figure 1.4: A guest operating system running inside a virtual machine.

aid debugging. If an operating system can be run as an application, then its
developers can set breakpoints, stop the kernel, and single step their code just
as they would when debugging an application.

Throughout the book, we discuss techniques that the operating system
uses to accomplish these and other illusions. In each case, the operating system
provides a more convenient and flexible programming abstraction than that
provided by the underlying hardware.

Providing Common Services: Operating System as Glue

Operating systems play a third key role: providing a set of common, standard
services to applications to simplify and standardize their design. An example
is the web server described earlier in this chapter. The operating system
hides the specifics of how the network and disk devices work, providing a
simpler abstraction based on receiving /sending reliable streams of bytes and
reading/writing named files. This lets the web server focus on its core task —
decoding incoming requests and filling them —rather than on formatting data
into individual network packets and disk blocks.

An important reason for the operating system to provide common services,
rather than letting each application provide its own, is to facilitate sharing
among applications. The web server must be able to read the file that the text
editor wrote. For applications to share files, they must be stored in a standard
format, with a standard system for managing file directories. Most operating
systems also provide a standard way for applications to pass messages and to
share memory.

The choice of which services an operating system should provide is often
judgment call. For example, computers can come configured with a blizzard of

1.1 What Is An Operating System? 13

1.1.4

Are the roles of referee,
illusionist, and glue
unique to operating

systems?

different devices: different graphics co-processors and pixel formats, different
network interfaces (WiFi, Ethernet, and Bluetooth), different disk drives (SCSI,
IDE), different device interfaces (USB, Firewire), and different sensors (GPS,
accelerometers), not to mention different versions of each. Most applications
can ignore these differences, by using only a generic interface provided by the
operating system. For other applications, such as a database, the specific disk
drive may matter quite a bit. For applications that can operate at a higher level
of abstraction, the operating system serves as an interoperability layer so that
both applications and devices can evolve independently.

Another standard service in most modern operating systems is the graph-
ical user interface library. Both Microsoft’s and Apple’s operating systems
provide a set of standard user interface widgets. This facilitates a common
“look and feel” to users so that frequent operations — such as pull down menus
and “cut” and “paste” commands — are handled consistently across applica-
tions.

Most of the code in an operating system implements these common ser-
vices. However, much of the complexity of operating systems is due to resource
sharing and the masking of hardware limits. Because common service code
uses the abstractions provided by the other two operating system roles, this
book will focus primarily on the operating system as a referee and as an
illusionist.

Operating System Design Patterns

The challenges that operating systems address are not unique — they apply
to many different computer domains. Many complex software systems have
multiple users, run programs written by third-party developers, and/or need
to coordinate many simultaneous activities. These pose questions of resource
allocation, fault isolation, communication, abstractions of physical hardware,
and how to provide a useful set of common services for software developers.
Not only are the challenges the same, but often the solutions are, as well: these
systems use many of the design patterns and techniques described in this
book.

We next describe some of the systems with design challenges similar to
those found in operating systems:

¢ Cloud computing (Figure 1.5) is a model of computing where applica-
tions run on shared computing and storage infrastructure in large-scale
data centers instead of on the user’s own computers. Cloud computing
must address many of the same issues as in operating systems in terms
of sharing, abstraction, and common services.

- Referee. How are resources allocated between competing applica-
tions running in the cloud? How are buggy or malicious applica-
tions prevented from disrupting other applications?

	front-cover
	body
	back-cover

