
Operating
Systems

Principles and Practice
Second Edition

Thomas Anderson
University of Washington

Michael Dahlin
University of Texas at Austin and Google

Recursive Books

recursivebooks.com



Operating Systems: Principles and Practice (Second Edition) by Thomas Anderson
and Michael Dahlin

Copyright c©Thomas Anderson and Michael Dahlin, 2011-2014.

ISBN 978-0-9856735-2-9

Publisher: Recursive Books, Ltd.
http://recursivebooks.com/

Cover: Reflection Lake, Mt. Ranier
Cover design: Cameron Neat
Illustrations: Cameron Neat
Copy editors: Sandy Kaplan, Whitney Schmidt
Printer: Lightning Source

SUGGESTIONS, COMMENTS, and ERRORS. We welcome suggestions, comments
and error reports, by email to suggestions@recursivebooks.com

Notice of rights. All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form by any means — elec-
tronic, mechanical, photocopying, recording, or otherwise — without the prior
written permission of the publisher. For information on getting permissions
for reprints and excerpts, contact permissions@recursivebooks.com

Notice of liability. The information in this book is distributed on an “As Is"
basis, without warranty. Neither the authors nor Recursive Books shall have
any liability to any person or entity with respect to any loss or damage caused
or alleged to be caused directly or indirectly by the information or instructions
contained in this book or by the computer software and hardware products
described in it.

Trademarks: Throughout this book trademarked names are used. Rather than
put a trademark symbol in every occurrence of a trademarked name, we state
we are using the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark. All
trademarks or service marks are the property of their respective owners.



Contents

Preface x

1 Introduction 3
1.1 What Is An Operating System? 6

Resource Sharing: Operating System as Referee 9
Masking Limitations: Operating System as Illusionist 11
Providing Common Services: Operating System as Glue 12
Operating System Design Patterns 13

1.2 Operating System Evaluation 19
Reliability and Availability 19
Security 20
Portability 21
Performance 23
Adoption 24
Design Tradeoffs 25

1.3 Operating Systems: Past, Present, and Future 26
Impact of Technology Trends 26
Early Operating Systems 27
Multi-User Operating Systems 28
Time-Sharing Operating Systems 29
Modern Operating Systems 30
Future Operating Systems 32

Exercises 33

Part I Kernels and Processes
2 The Kernel Abstraction 39

2.1 The Process Abstraction 43
2.2 Dual-Mode Operation 44

Privileged Instructions 47
Memory Protection 49
Timer Interrupts 56

2.3 Types of Mode Transfer 57
User to Kernel Mode 57
Kernel to User Mode 61

2.4 Implementing Safe Mode Transfer 61
Interrupt Vector Table 63
Interrupt Stack 64
Two Stacks per Process 65
Interrupt Masking 67
Hardware Support for Saving and Restoring Registers 68

2.5 Putting It All Together: x86 Mode Transfer 69



iv Operating Systems: Principles and Practice

2.6 Implementing Secure System Calls 74
2.7 Starting a New Process 77
2.8 Implementing Upcalls 79
2.9 Case Study: Booting an Operating System Kernel 83
2.10 Case Study: Virtual Machines 84
2.11 Summary and Future Directions 87
Exercises 90

3 The Programming Interface 95
3.1 Process Management 100

Windows Process Management 101
UNIX Process Management 102

3.2 Input/Output 107
3.3 Case Study: Implementing a Shell 110
3.4 Case Study: Interprocess Communication 113

Producer-Consumer Communication 114
Client-Server Communication 115

3.5 Operating System Structure 115
Monolithic Kernels 117
Microkernel 122

3.6 Summary and Future Directions 123
Exercises 124

Part II Concurrency
4 Concurrency and Threads 129

4.1 Thread Use Cases 132
Four Reasons to Use Threads 134

4.2 Thread Abstraction 136
Running, Suspending, and Resuming Threads 136
Why “Unpredictable Speed”? 138

4.3 Simple Thread API 141
A Multi-Threaded Hello World 142
Fork-Join Parallelism 143

4.4 Thread Data Structures and Life Cycle 145
Per-Thread State and Thread Control Block (TCB) 146
Shared State 148

4.5 Thread Life Cycle 148
4.6 Implementing Kernel Threads 153

Creating a Thread 155
Deleting a Thread 157
Thread Context Switch 157

4.7 Combining Kernel Threads and Single-Threaded User Processes 164
4.8 Implementing Multi-Threaded Processes 165

Implementing Multi-Threaded Processes Using Kernel Threads
166

Implementing User-Level Threads Without Kernel Support 167



Operating Systems: Principles and Practice v

Implementing User-Level Threads With Kernel Support 168
4.9 Alternative Abstractions 170

Asynchronous I/O and Event-Driven Programming 171
Data Parallel Programming 175

4.10 Summary and Future Directions 176
Historical Notes 177

Exercises 178

5 Synchronizing Access to Shared Objects 183
5.1 Challenges 187

Race Conditions 187
Atomic Operations 189
Too Much Milk 190
Discussion 193
A Better Solution 194

5.2 Structuring Shared Objects 195
Implementing Shared Objects 196
Scope and Roadmap 198

5.3 Locks: Mutual Exclusion 198
Locks: API and Properties 199
Case Study: Thread-Safe Bounded Queue 201

5.4 Condition Variables: Waiting for a Change 205
Condition Variable Definition 206
Thread Life Cycle Revisited 211
Case Study: Blocking Bounded Queue 213

5.5 Designing and Implementing Shared Objects 214
High Level Methodology 216
Implementation Best Practices 220
Three Pitfalls 224

5.6 Three Case Studies 227
Readers/Writers Lock 227
Synchronization Barriers 231
FIFO Blocking Bounded Queue 236

5.7 Implementing Synchronization Objects 237
Implementing Uniprocessor Locks by Disabling Interrupts 238
Implementing Uniprocessor Queueing Locks 239
Implementing Multiprocessor Spinlocks 240
Implementing Multiprocessor Queueing Locks 240
Case Study: Linux 2.6 Kernel Mutex Lock 244
Implementing Condition Variables 246
Implementing Application-level Synchronization 246

5.8 Semaphores Considered Harmful 248
5.9 Summary and Future Directions 253

Historical Notes 254
Exercises 254

6 Multi-Object Synchronization 261
6.1 Multiprocessor Lock Performance 262
6.2 Lock Design Patterns 266



vi Operating Systems: Principles and Practice

Fine-Grained Locking 266
Per-Processor Data Structures 268
Ownership Design Pattern 268
Staged Architecture 269

6.3 Lock Contention 272
MCS Locks 272
Read-Copy-Update (RCU) 274

6.4 Multi-Object Atomicity 282
Careful Class Design 283
Acquire-All/Release-All 283
Two-Phase Locking 284

6.5 Deadlock 285
Deadlock vs. Starvation 288
Necessary Conditions for Deadlock 289
Preventing Deadlock 291
The Banker’s Algorithm for Avoiding Deadlock 294
Detecting and Recovering From Deadlocks 299

6.6 Non-Blocking Synchronization 305
6.7 Summary and Future Directions 307
Exercises 308

7 Scheduling 313
7.1 Uniprocessor Scheduling 316

First-In-First-Out (FIFO) 317
Shortest Job First (SJF) 318
Round Robin 320
Max-Min Fairness 323
Case Study: Multi-Level Feedback 326
Summary 328

7.2 Multiprocessor Scheduling 329
Scheduling Sequential Applications on Multiprocessors 329
Scheduling Parallel Applications 331

7.3 Energy-Aware Scheduling 337
7.4 Real-Time Scheduling 340
7.5 Queueing Theory 343

Definitions 343
Little’s Law 345
Response Time Versus Utilization 348
“What if?” Questions 355
Lessons 358

7.6 Overload Management 358
7.7 Case Study: Servers in a Data Center 361
7.8 Summary and Future Directions 362
Exercises 363

Part III Memory Management
8 Address Translation 371



Operating Systems: Principles and Practice vii

8.1 Address Translation Concept 374
8.2 Towards Flexible Address Translation 376

Segmented Memory 376
Paged Memory 382
Multi-Level Translation 385
Portability 390

8.3 Towards Efficient Address Translation 392
Translation Lookaside Buffers 393
Superpages 396
TLB Consistency 398
Virtually Addressed Caches 402
Physically Addressed Caches 403

8.4 Software Protection 405
Single Language Operating Systems 406
Language-Independent Software Fault Isolation 410
Sandboxes Via Intermediate Code 413

8.5 Summary and Future Directions 414
Exercises 415

9 Caching and Virtual Memory 421
9.1 Cache Concept 425
9.2 Memory Hierarchy 427
9.3 When Caches Work and When They Do Not 429

Working Set Model 430
Zipf Model 433

9.4 Memory Cache Lookup 434
9.5 Replacement Policies 439

Random 439
First-In-First-Out (FIFO) 440
Optimal Cache Replacement (MIN) 441
Least Recently Used (LRU) 442
Least Frequently Used (LFU) 443
Belady’s Anomaly 444

9.6 Case Study: Memory-Mapped Files 445
Advantages 446
Implementation 447
Approximating LRU 451

9.7 Case Study: Virtual Memory 454
Self-Paging 454
Swapping 456

9.8 Summary and Future Directions 457
Exercises 458

10 Advanced Memory Management 465
10.1 Zero-Copy I/O 467
10.2 Virtual Machines 470

Virtual Machine Page Tables 470
Transparent Memory Compression 472

10.3 Fault Tolerance 475



viii Operating Systems: Principles and Practice

Checkpoint and Restart 476
Recoverable Virtual Memory 478
Deterministic Debugging 479

10.4 Security 481
10.5 User-Level Memory Management 482
10.6 Summary and Future Directions 485
Exercises 485

Part IV Persistent Storage
11 File Systems: Introduction and Overview 491

11.1 The File System Abstraction 495
11.2 API 502
11.3 Software Layers 505

API and Performance 506
Device Drivers: Common Abstractions 508
Device Access 508
Putting It All Together: A Simple Disk Request 511

11.4 Summary and Future Directions 511
Exercises 513

12 Storage Devices 517
12.1 Magnetic Disk 517

Disk Access and Performance 520
Case Study: Toshiba MK3254GSY 523
Disk Scheduling 527

12.2 Flash Storage 530
12.3 Summary and Future Directions 536
Exercises 540

13 Files and Directories 545
13.1 Implementation Overview 546
13.2 Directories: Naming Data 547
13.3 Files: Finding Data 553

FAT: Linked List 555
FFS: Fixed Tree 558
NTFS: Flexible Tree With Extents 568
Copy-On-Write File Systems 573

13.4 Putting It All Together: File and Directory Access 581
13.5 Summary and Future Directions 583
Exercises 584

14 Reliable Storage 589
14.1 Transactions: Atomic Updates 592

Ad Hoc Approaches 593
The Transaction Abstraction 595
Implementing Transactions 597



Operating Systems: Principles and Practice ix

Transactions and File Systems 609
14.2 Error Detection and Correction 613

Storage Device Failures and Mitigation 613
RAID: Multi-Disk Redundancy for Error Correction 619
Software Integrity Checks 631

14.3 Summary and Future Directions 633
Exercises 635

References 641

Glossary 651

Index 662

About the Authors 669


	front-cover
	body
	back-cover



